Improving Fitness Functions in Genetic Programming for Classification on Unbalanced Credit Card Data
نویسندگان
چکیده
Credit card fraud detection based on machine learning has recently attracted considerable interest from the research community. One of the most important tasks in this area is the ability of classifiers to handle the imbalance in credit card data. In this scenario, classifiers tend to yield poor accuracy on the fraud class (minority class) despite realizing high overall accuracy. This is due to the influence of the majority class on traditional training criteria. In this paper, we aim to apply genetic programming to address this issue by adapting existing fitness functions. We examine two fitness functions from previous studies and develop two new fitness functions to evolve GP classifier with superior accuracy on the minority class and overall. Two UCI credit card datasets are used to evaluate the effectiveness of the proposed fitness functions. The results demonstrate that the proposed fitness functions augment GP classifiers, encouraging fitter solutions on both the minority and the
منابع مشابه
Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملImproving Credit Card Fraud Detection with Calibrated Probabilities
Previous analysis has shown that applying Bayes minimum risk to detect credit card fraud leads to better results measured by monetary savings, compared with traditional methodologies. Nevertheless, this approach requires good probability estimates that not only separates well between positive and negative examples, but also assesses the real probability of the event. Unfortunately not all class...
متن کاملGenetic Programming for Classification with Unbalanced Data
In classification, machine learning algorithms can suffer a performance bias when data sets are unbalanced. Binary data sets are unbalanced when one class is represented by only a small number of training examples (called the minority class), while the other class makes up the rest (majority class). In this scenario, the induced classifiers typically have high accuracy on the majority class but...
متن کاملSpeaker Verification on Unbalanced Data with Genetic Programming
Automatic Speaker Verification (ASV) is a highly unbalanced binary classification problem, in which any given speaker must be verified against everyone else. We apply Genetic programming (GP) to this problem with the aim of both prediction and inference. We examine the generalisation of evolved programs using a variety of fitness functions and data sampling techniques found in the literature. A...
متن کامل